Unbiased Evaluation of Literature Data on Equilibrium Melting Temperature and Enthalpy of Fusion of Perfectly Syndiotactic Polypropylene

PITT SUPAPHOL*

The Petroleum and Petrochemical College, Chulalongkorn University, Soi Chulalongkorn 12, Phyathai Road, Pathumwan, Bangkok 10330, Thailand

Received 11 January 2000; accepted 26 February 2000

ABSTRACT: The thermodynamic properties of highly syndiotactic polypropylene (PP) were reevaluated based on the data taken from the literature. The thermodynamic equilibrium melting temperature of a perfectly syndiotactic PP, which was estimated based on the Flory theory for the depression of the melting point in random copolymers, was 168.0°C. However, it was found to be 174.2°C when a linear extrapolation was attempted on a plot of the observed equilibrium melting temperature against the syndiotacticity level. The thermodynamic enthalpy of fusion of a perfect crystal of fully syndiotactic PP was estimated to be 8.7 kJ mol⁻¹, and the average value of the literature data was 7.8 kJ mol⁻¹. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 1603–1609, 2001

Key words: syndiotactic polypropylene; thermodynamic property; equilibrium melting temperature; enthalpy of fusion

INTRODUCTION

The syndiotactic form of polypropylene (s-PP) was first synthesized in the early 1960s by Natta et al.^{1,2} based on the AlEt₂Cl/VCl₄ catalyst systems along with anisole as an electron donor. Pertinent publications regarding the synthesis of s-PP based on the traditional Ziegler–Natta catalysis were given in detail by Natta et al.³ and later by Boor and Youngman.^{4,5} Even though the resulting polymer possessed a fair level of syndiotactic content, it contained too high a level of regioirregular defects (e.g., head to head/tail to tail type defects). As a result, the properties of the obtained polymer were quite difficult to control, and this was the reason why the first generation s-PP was largely viewed as a laboratory curiosity.

The second generation s-PP was successfully synthesized in 1988 when Ewen et al.⁶ reported that highly stereoregular and regioregular s-PP can be polymerized using a catalyst system composed of isopropylidene(cyclo-pentadienyl)(9-fluorenyl)zirconium or hafnium dichloride and methylaluminoxane. The discovery of these new metallocene catalyst systems provided a new route for the production of s-PP with much improved purity and yields, which led to renewed interest in both scientific research and industrial applications. In terms of scientific research, there were a number of publications relating to various aspects of the physical properties of s-PP. Many of these studies up to 1994 were reviewed and discussed in a publication by Rodriguez-Arnold et al.⁷

Among these scientific studies, the thermal behavior of s-PP was also of focal interest and was reported by various laboratories.^{8–20} Preliminary

^{*} E-mail: ps@sunsv1.ppc.chula.ac.th.

Journal of Applied Polymer Science, Vol. 79, 1603–1609 (2001) © 2000 John Wiley & Sons, Inc.

Literature and Estimated Equilibrium Melt	d Equilib	rium Me	lting Tem	peratur	e for 10	ature (1, 0% Synd	MORECUAR CHARACUERIZATION, EqUILIBITIAN MENTING TEMPERATURE (I_m), and Entimalpy of FUSION (Δn_f) Data of S-FF Taken from re and Estimated Equilibrium Melting Temperature for 100% Syndiotactic s-PP Sample [$(T_m^0)_{100\%}$]	f) Data 01 S	-гг такеп	ILOII
1	2	က	4	5	9	7	8	6	10	11
Data Source	$\stackrel{M_{w_3}}{(imes 10^3)}$	M_w/M_n	[%rrrr]	[%rr]	[%r]	$\stackrel{T_o^o}{(\circ \overset{m}{\mathrm{C}})}$	Method	$\stackrel{\Delta H^o_f}{(\mathrm{kJ} \ \mathrm{mol}^{-1})}$	$\overset{(T_m^o)_{100\%}{\rm a}}{\overset{{\rm a}}{({}^{\circ}{\rm C})}}$	$(T^o_{n})_{100\%}^{\mathrm{a}}$ a
Ziegler–Natta catalyzed s-PP										
Boor and Youngman ^{4,5,8}	Ι	Ι			I	161.0	$\log \chi_c$ versus $1/T_m$ (DTA/density) ^b	$(2.9)^{c}$	I	
Miller and Seeley ^{9,10}	Ι	Ι		64.4	71.7	158.8	Hoffman–Weeks (DSC@40/-)	$(3.1)^{c}$	I	
Metallocene catalyzed s-PP								-		
Galambos et al. ¹¹			95.0	I		171.0	Gibbs-Thomson (DSC@20/density)	$(4.4)^{d}$		
Haftka and Könnecke ¹²	98	2.2		92.4	95.3	151.0	Hoffman-Weeks (DSC@20/WAXD)	8.3	159.9	160.5
	129	2.3		93.3	96.0	155.0	Hoffman–Weeks (DSC@20/-)	I		163.3
Balbontin et al. ¹³	52	2.3	81.4	85.6	91.9	(134.9)	Hoffman–Weeks (DSC@10/-)	I	I	(150.5)
	77	2.9	88.8	92.2	95.4	(149.9)	Hoffman–Weeks (DSC@10/-)			(159.1)
	96	2.9	91.5	94.9	96.9	165.9	Hoffman-Weeks (DSC@10/-)			172.4
	115	2.7	88.6	91.8	95.1	152.9	Hoffman-Weeks (DSC@10/-)			162.8
	152	2.1	91.4	95.1	97.0	163.9	Hoffman-Weeks (DSC@10/-)			170.2
	164	2.2	92.1	94.8	96.8	165.9	Hoffman-Weeks (DSC@10/WAXD)	7.0	173.5	172.7
	173	2.0	91.5	95.4	97.2	169.9	Hoffman-Weeks (DSC@10/-)			175.9
	228	2.4	93.2	96.2	97.6	(181.9)	Hoffman-Weeks (DSC@10/-)			(187.3)
	266	2.6	94.5	96.7	98.0	(185.9)	Hoffman-Weeks (DSC@10/-)			(190.5)
Marigo et al. ¹⁴	164	2.2	92.1	94.8	96.8	168.0	Hoffman–Weeks (DSC@10/-)			174.9
Rodriguez-Arnold et			1			i				
al. ^{19,16}	12	1.2	85.0	91.0	94.0	(147.5)	Hoffman–Weeks (DSC@10/-)			(159.6)
	17	1.1	86.0	91.0	94.0	150.7	Hoffman-Weeks (DSC@10/WAXD)	$7.6^{\rm e}$	163.3	162.9
	23	1.1	88.0	93.0	95.0	159.3	Hoffman-Weeks (DSC@10/WAXD)	$7.8^{\rm e}$	169.8	169.8
	23	1.1	88.0	93.0	95.0	158.0	Gibbs-Thomson (DSC@10/WAXD)	$7.8^{\rm e}$	168.5	168.5
	29	1.1	86.0	91.0	94.0	153.6	Hoffman-Weeks (DSC@10/WAXD)	$7.6^{\rm e}$	166.3	166.0
	37	1.1	86.0	92.0	94.0	155.2	Hoffman-Weeks (DSC@10/WAXD)	7.7^{e}	167.8	167.7
	46	1.1	86.0	92.0	94.0	158.1	Hoffman-Weeks (DSC@10/WAXD)	$8.2^{\rm e}$	170.1	170.8
	59	1.1	86.0	92.0	94.0	157.1	Hoffman-Weeks (DSC@10/WAXD)	$7.4^{\rm e}$	170.4	169.7
	85	1.1	86.0	92.0	94.0	157.0	Hoffman-Weeks (DSC@10/WAXD)	7.9^{e}	169.4	169.6
	85	1.1	86.0	92.0	94.0	160.0	Gibbs-Thomson (DSC@10/WAXD)	$7.9^{\rm e}$	172.5	172.8
	158	1.2	87.0	92.0	95.0	155.2	Hoffman-Weeks (DSC@10/WAXD)	$8.0^{ m e}$	165.2	165.5
	281	1.2	87.0	92.0	95.0	156.6	Hoffman-Weeks (DSC@10/WAXD)	$8.0^{ m e}$	166.7	167.0
Uehara et al. 17	94	2.3	89.1	Ι	97.2	157.0	Hoffman–Weeks (DSC@10/-)	I	I	162.7
	96	2.0	87.3		97.1	156.0	Hoffman–Weeks (DSC@10/-)	I	I	161.9
	96	2.1	87.3		96.5	155.0	Hoffman–Weeks (DSC@10/-)			162.1
	109	1.9	88.6		97.2	156.0	Hoffman–Weeks (DSC@10/-)	I	I	161.7
	180	3.0	93.6	I	97.5	163.0	Hoffman-Weeks (DSC@10/density)	$(5.4)^{\mathrm{f}}$	170.8	168.2
	202	1.8	94.5		98.0	170.0	Hoffman-Weeks (DSC@10/density)	$(5.2)^{\mathrm{f}}$	176.2	174.3

Schmidtke et al. ¹⁸	239	2.3	91.0	97.0	I	166.0	Hoffman-Weeks (SAXS@10/SAXS)	7.7	I	
	239	2.3	91.0	97.0		(176.0)	Gibbs-Thomson (SAXS@10/SAXS)	7.7		
De Rosa et al. ¹⁹	164		92.5			164.0	Hoffman-Weeks (DSC@2.5/-)			
	213		94.2			168.0	Hoffman-Weeks (DSC@2.5/-)			
	228		95.0			170.0	Hoffman-Weeks (DSC@2.5/-)			
	266		95.8			172.0	Hoffman–Weeks (DSC@2.5/-)			
Supaphol and Spruiell ²⁰	133	3.6	74.6	83.7	88.3	148.3	Hoffman-Weeks (DSC@20/-)			173.3
	165	2.2	77.1	87.3	91.4	146.1	Hoffman–Weeks (DSC@20/-)			163.7
	165	3.5	75.3	85.1	90.0	146.4	Hoffman–Weeks (DSC@20/-)			167.2
	171	2.1	74.6	84.4	89.2	146.4	Hoffman-Weeks (DSC@20/-)			169.0
	195	3.7	74.6	83.1	87.4	146.6	Hoffman–Weeks (DSC@20/-)			173.7
Average								7.8 ± 0.3	168.7 ± 4.1 168.0 ± 4.5	168.0 ± 4.5

 a Calculated based on the Flory theory for the depression of the melting temperature in copolymers using either a corresponding ΔH_{c}^{\prime} -value or the average value of 7.8 kJ respective

and/or $\Delta H_f = \text{DTA}$ (where possible, the heating rate used = $\Delta H_f/\chi_c$. DSC@40, 20, etc.: thermal behavior observed at ^b It should be read, for example, the method of obtaining $T_m^{n} = \log \chi$ versus $1/T_m$; the method of obtaining T_m is also reported); and the method of obtaining the absolute crystallinity, $\chi_c =$ density. It is worth noting that ΔH_c^{1} a heating rate of 40 or 20°C min⁻¹, ° The authors estimated the ΔH_f° ^b It should be read,

based on $\Delta H_f^o = \Delta H_f / \chi_o$ $3.1 \pm 0.4 \text{ kJ mol}^{-1}$ 11) be al. careful reevaluation, the correct value should recalculated (based on their data listed in table I in Galambos et Youngman.⁴ After Boor and ^d The extrapolated value (as reported), whereas the average value of ΔH_f^o values based on data given by s.

5.1 ± 0.5 kJ moi ^e Taken directly from the data

 $^{\rm e}$ Taken directly from the data listed in table 4.1 in Rodriguez-Arnold. 16 $^{\rm f}$ Recalculated values based on the data listed in table 2 in Uehara et al. 17

1605 THERMODYNAMIC PROPERTIES OF S-PP

observation of these results revealed that the equilibrium melting temperature (T_m^o) is strongly dependent on the syndiotacticity level of the sample studied. The estimated values of the enthalpy of fusion (ΔH_f^o) vary widely. Estimation of the equilibrium T_m^{\prime} for a 100% syndiotactic s-PP sample $[(T_m^{\circ})_{100\%}]$ gave anomalous^{9,10,13} and debatable^{19,20} results. Consequently, the purpose of this article is twofold: it is a critical review of the literature data and an unbiased evaluation of the ΔH_f^o and $(T_m^o)_{100\%}$ values based on these data.

EXPERIMENTAL

Compilation of Literature Data

Table I summarizes in chronological order the T_m^o (column 7) and the ΔH_f^o (column 9) data of s-PP samples, as well as corresponding molecular characterization information (columns 2-6) that was reported in the literature.^{8–20} It should be noted that only the data reported by Boor and Youngman^{4,5,8} and Miller and Seeley^{9,10} were measured on s-PP samples that were polymerized based on Ziegler-Natta catalysis whereas the rest of the data¹¹⁻²⁰ were measured on s-PP samples produced by metallocene catalysis. The method for determining the T_m^o along with the method for obtaining the thermal information shown in the parentheses (i.e., the melting temperature T_m and/or heat of fusion ΔH_f and/or the method for measuring the absolute crystallinity (χ_c) are also reported in column 8 in Table I. It should be noted that the heating rate used to obtain thermal information is also given if known (e.g., DSC@20 is equivalent to saying that the thermal behavior was observed using a DSC at a heating rate of $20^{\circ} \text{C min}^{-1}$).

The most commonly used approaches for obtaining the T_m^o are the Gibbs-Thomson²¹ and Hoffman-Weeks²² extrapolation methods. It is not the intention of this article to describe these two methods in detail; therefore, interested readers are urged to consult with either the original^{21,22} or related²³ publications. In short, the Gibbs-Thomson equation predicts a linear relationship between the T_m and the reciprocal value of the crystal thickness $1/l_c$ whereas the Hoffman-Weeks equation predicts a linear relationship between the T_m and the crystallization temperature T_c . In order for these methods to be used effectively, the effects of crystal thickening and/or superheating need to be minimized and this can

be done through a proper experimental scheme used to measure the T_m . For the DSC technique, these effects can be minimized by using a moderate heating rate (i.e., ca. 5 to ca. 20°C min⁻¹) and an optimal sample size (i.e., ≤ 7 mg).

The ΔH_f^o can be obtained based on the relation $\Delta H_f^o = \Delta H_f / \chi_c$, where the ΔH_f is for finite thickness crystals (crystallized at an arbitrary T_c). Based on column 8 in Table I, three methods were used to arrive at the χ_c : density,^{4,11,17} WAXD,^{12,13,15,16} and SAXS.¹⁸ As discussed later, different methods for measuring the χ_c value have a strong affect on the resulting value of the ΔH_f^o .

Analysis and Discussion of Literature Data

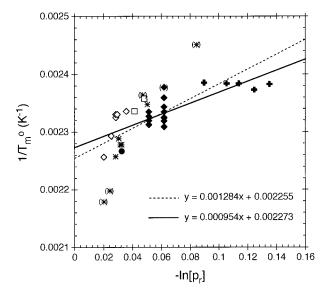
According to Table I, the syndiotacticity level (as determined by the racemic pentad content [%rrrr]) of the s-PP samples studied ranged from 74.6 to 95.8% (column 4) with the exclusion of the data determined for Ziegler–Natta catalyzed s-PP samples.^{4,5,8-10} The resulting T_m^o value ranged from 146.1 to 172.0°C (column 7) with the exception of the data in parentheses. It is worth noting that because the syndiotacticity level of the s-PP samples polymerized using Ziegler–Natta catalysis were apparently low^{4,5,8-10} and because a small amount of isotactic PP (i-PP) crystals were present in WAXD patterns,^{9,10} the resulting T_m^o values estimated for these s-PP samples may be questionable.

In Table I the ΔH_f^o is in the range of 5.1–8.3 kJ mol^{-1} (column 9), and the average value is 7.3 \pm 1.0 kJ mol⁻¹. (Data measured for Ziegler-Natta catalyzed s-PP samples^{4,5,8-10} are excluded.) As mentioned previously, the method used to obtain the χ_c value has a strong affect on the resulting value of the ΔH_f^o . This can be proven by closer examination of the ΔH_f^o data listed in column 9. It is evident that when the density was used to calculate the χ_c value, the resulting ΔH_f^o value ranged from 5.1 to 5.4 kJ mol⁻¹; however, it ranged from 7.0 to 8.3 kJ mol^{-1} when WAXD was used to obtain the χ_c value. This can only be interpreted as the χ_c value calculated from the density data being greater than that obtained from the WAXD data. This may be explained by a hypothesis that the crystallinity content calculated from the density is higher than that obtained from the WAXD data due to contributions from the interfacial layer.²⁴ Consequently, the ΔH_f^o value obtained from using the density as the means to calculate the χ_c may not be totally accurate. With this in mind, the average value of the ΔH_f^o (calculated without the data whose χ_c value was based on the density measurement) of 7.8 \pm 0.3 kJ mol⁻¹ may be more meaningful.

A critical comment should also be made on the ΔH_f^o values reported by Boor and Youngman^{4,5,8} and Miller and Seeley.^{9,10} Both groups calculated and reported their ΔH_f^o value based on the original ΔH_f and χ_c data reported by Boor and Youngman.⁴ In their original publication, Boor and Youngman⁴ assumed amorphous²⁵ and unit cell^{1,2} densities (denoted ρ_a and ρ_c , respectively) of 0.854 and 0.90 g mL⁻¹, respectively. Based on the most recent data,^{26,27} the ρ_c value was calculated to be 0.930 g mL⁻¹ whereas the ρ_a value stands as previously noted. Based on this information, the correct ΔH_f^o value for the original data of Boor and Youngman⁴ should be 3.1 ± 0.4 kJ mol⁻¹, which is equal to the recalculated value used by Miller and Seeley.^{9,10}

The estimated T_m^o values summarized in Table I exhibit a strong correlation with the syndiotacticity level of the s-PP samples studied. In an attempt to correlate the dependence of the observed T_m^o values as a function of syndiotacticity level, Miller²⁸ modified the original Flory theory for the depression of the melting point in copolymers^{29,30} to be used in this manner. The model assumes that a s-PP chain has a random arrangement of syndiotactic dyads, which are crystallizable, and isotactic ones, which are not crystallizable and are totally excluded from the crystals. Mathematically, this model reads

$$rac{1}{T^o_m} - rac{1}{(T^o_m)_{100\%}} = - igg(rac{R}{\Delta H^o_f} igg) \ln p_r,$$
 (1)


where $(T_m^{\circ})_{100\%}$ and ΔH_f° are for a 100% syndiotactic s-PP sample, R is the universal gas constant, and p_r is the fraction of the monomer units that are syndiotactically bonded. In a practical sense, p_r is replaced by the racemic dyad content [%r].

There are two ways of estimating the $(T_m^o)_{100\%}$ value based on the data listed in Table I: the direct calculation method [this can be done because the values of T_m^o , ΔH_f^o (taken as the average value of the literature data), and p_r are known] and the extrapolation method [this can be done through the plot of $1/T_m^o$ vs. $-\ln p_r$ with the y intercept being $1/(T_m^o)_{100\%}$ and the slope being $R/\Delta H_f^o$]. We analyzed the data taken from the literature based on the first method and report the results in columns 10 and 11 in Table I. Column 10 summarizes the calculated $(T^o_m)_{100\%}$ values based on the actual reported ΔH^o_f values. The calculated $(T^o_m)_{100\%}$ values range from 159.9 to 176.2°C, and the average value is 168.7 ± 4.1°C. Column 11 summarizes the $(T^o_m)_{100\%}$ values estimated based on the average ΔH^o_f value (i.e., 7.8 kJ mol⁻¹). The calculated $(T^o_m)_{100\%}$ values are in the range of 160.5–175.9°C (the values in parentheses are excluded), and the average value is 168.0 ± 4.5°C.

We also analyzed the data taken from the literature using the second method by plotting $1/T_m^o$ as a function of $-\ln p_r$ (as shown in Fig. 1). With the exclusion of the data points marked in parentheses, the least-squares line fit shown in Figure 1 as the solid line (the correlation coefficient of the fit $r^2 = 0.61$) through the bulk of the data gave the $(T_m^o)_{100\%}$ and ΔH_f^o values of 166.7°C and 8.7 kJ mol⁻¹, respectively. However, if all of the data points are included in the extrapolation, the least-squares line fit shown in Figure 1 as the broken line (the correlation coefficient of the fit $r^2 = 0.50$) through the bulk of the data gave the $(T_m^o)_{100\%}$ and ΔH_f^o values of 170.4°C and 6.5 kJ mol⁻¹, respectively.

Apparently, both methods give very comparable $(T_m^o)_{100\%}$ values (168.0°C in the first method vs. 166.7°C in the second). In addition, the ΔH_f^o value of 8.7 kJ mol⁻¹ that is estimated based on the extrapolation method is satisfactory when considering that the average value of the raw data is 7.8 kJ mol⁻¹. It is worth noting that estimation of the $(T_m^o)_{100\%}$ values using the Flory theory for the depression of the melting point in copolymers^{29,30} is fairly justified by the work of Schmidtke et al.,¹⁸ who found that s-PP does not thicken as much during crystallization and annealing. This finding further suggests that the isotactic defects should be totally, or at least partially, excluded from the crystals.

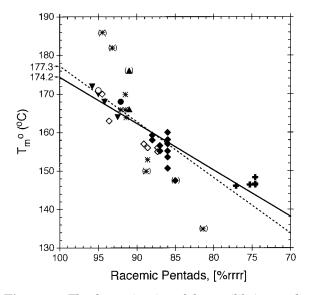

A number of authors^{9,13,17} applied the Flory theory for the depression of the melting point in copolymers^{29,30} to their data. Uehara et al.¹⁷ analyzed their data based on the first method and arrived at the $(T_m^o)_{100\%}$ value of $168 \pm 2^{\circ}$ C, which is in very good agreement with our result. Balbontin et al.¹³ utilized the extrapolation method and found the $(T_m^o)_{100\%}$ value of 213.8°C. Because their estimated ΔH_f^o value of 1.4 kJ mol⁻¹ was clearly too low, their $(T_m^o)_{100\%}$ value seems unrealistically high. Miller and Seeley⁹ reported a $(T_m^o)_{100\%}$ value of approximately 220°C. We found this very questionable, because they did not report this value in their original publication.¹⁰ To

Figure 1 The determination of the equilibrium melting temperature of a 100% syndiotactic polypropylene (s-PP) sample $[(T_m^o)_{100\%}]$ by means of the Flory theory for the depression of the melting temperature in copolymers through the plot of $1/T_m^o$ versus $-\ln p_r$, where p_r is substituted by the racemic dyad content. The least-squares fit with $r^2 = (-) 0.61$ or (- -) 0.50. (\Box) Haftka and Könnecke, ¹² (*) Balbontin et al., ¹³ (\bullet) Marigo et al., ¹⁴ (\bullet) Rodriguez-Arnold et al., ^{15,16} (\diamond) Uehara et al., ¹⁷ and (\bullet) Supaphol and Spruiell.²⁰

make our point certain, we recalculated the $(T_m^o)_{100\%}$ value based on their original data $(\Delta H_f = 3.1 \text{ kJ mol}^{-1} \text{ and } p_r = 0.72)$ and found it to be abnormally high (424.4°C). Even when the average ΔH_f^o value of 7.8 kJ mol⁻¹ was used instead, the resulting $(T_m^o)_{100\%}$ value was still too high (237.3°C). Along with the fact that a small amount of i-PP crystals were found in their WAXD patterns,^{9,10} their original T_m^o value seems to be overestimated (because of the contribution of the crystals of isotactic counits).

Recently, De Rosa et al.¹⁹ questioned the applicability of the Flory theory for the depression of the melting point in copolymers^{29,30} to determine the $(T_m^{o})_{100\%}$ value in s-PP. Based on the fact that isotactic defects (which are present in an s-PP sample) are found to be at least partly tolerably included within the crystals,³¹ the assumption of total exclusion of the isotactic defects from the s-PP crystals adopted in previous analyses has to be contested; and this may result in a higher value of the calculated $(T_m^{o})_{100\%}$. However, it will be interesting to utilize other theories of melting point depression in copolymer crystals^{32,33} to estimate the $(T_m^{o})_{100\%}$ value of s-PP. Because addi-

Figure 2 The determination of the equilibrium melting temperature of a 100% syndiotactic polypropylene (s-PP) sample $[(T_m^o)_{100\%}]$ by means of the extrapolation of the equilibrium melting temperatures (T_m^o) of the s-PP samples shown in Table I as a function of the syndiotactic pentad content [% rrrr]. The least-squares fit with $r^2 = (-) 0.83$ or (- -) 0.66. (\bigcirc) Galambos et al.,¹¹ (*) Balbontin et al.,¹³ (\bullet) Marigo et al.,¹⁴ (\diamond) Rodriguez-Arnold et al.,^{15,16} (\bigcirc) Uehara et al.,¹⁷ (\blacktriangle) Schmidtke et al.,¹⁸ (\blacktriangledown) De Rosa et al.,¹⁹ and (\blacklozenge) Supaphol and Spruiell.²⁰

tional work is needed to apply these theories to the data summarized in Table I, this investigation is a matter for future research.

De Rosa et al.¹⁹ proposed a direct graphical extrapolation method to obtain $(T^o_m)_{100\%}$ values based on a plot of observed T_m^o values versus the syndiotactic pentad content [%rrrr]. We plotted the T_m^o values as summarized in column 7 in Table I as a function of the syndiotactic pentad content [%rrrr] (column 4), as shown in Figure 2. With the exclusion of the data points marked in parentheses, the least-squares line fit shown in Figure 2 as the solid line (the correlation coefficient of the fit $r^2 = 0.83$) through the bulk of the data resulted in the $(T_m^o)_{100\%}$ value of 174.2°C. However, if all of the data points are included in the extrapolation, the least-squares line fit shown in Figure 2 as the broken line (the correlation coefficient of the fit $r^2 = 0.66$) through the bulk of the data gave the $(T_m^o)_{100\%}$ value of 177.3°C. When compared to the reported value by De Rosa et al.¹⁹ (182°C), our result of 174.2°C seems reasonably acceptable (when taking into account that this value was estimated based on an unbiased compilation of the literature data).

Comparison of the $(T_m^o)_{100\%}$ value calculation based on the Flory theory for the depression of the melting point in copolymers^{29,30} and the estimation based on the direct extrapolation method indicates comparable results (168.0 vs. 174.2°C) within the estimated experimental error. It is not certain at this point which method is the best for the estimation of the $(T_m^o)_{100\%}$, but the method based on the Flory theory at least has a theoretical basis for the linear dependence of the extrapolated quantity.

CONCLUSIONS

The literature data on the thermodynamic properties of s-PP were critically reviewed. The $(T_m^o)_{100\%}$ of a completely syndiotactic PP, which was estimated based on the Flory theory for the depression of the melting point in random copolymers, was found to be 168.0°C. The use of the Flory theory in the estimation of the $(T_m^o)_{100\%}$ value was evidently justified by the work of Schmidtke et al.,¹⁸ who found no thickening of crystals upon crystallization and annealing. The thermodynamic ΔH_f^o of a perfect crystal of completely syndiotactic PP was estimated to be 8.7 kJ mol⁻¹ whereas the average value of the literature data was 7.8 kJ mol⁻¹.

Contrary to the findings by Schmidtke et al.,¹⁸ Auriemma et al.³¹ reported that isotactic defects are found to be at least partially tolerably included within the crystals. As a result, the assumption of the total exclusion of the isotactic defects from the s-PP crystals, which was the basis in the utilization of the Flory theory in the estimation of $(T_m^o)_{100\%}$ and ΔH_f^o values, must be questioned. As a result, a graphical extrapolation of the plot of the observed T_m^o value versus the syndiotactic pentad content [%rrrr] was proposed by De Rosa et al.¹⁹ Based on this method, a $(T_m^o)_{100\%}$ value of 174.2°C was found. It is necessary to mention that the most significant drawback of this method is the lack of theoretical reasoning of a linear relationship between the T_m^o value and the racemic pentads [%rrrr].

REFERENCES

 Natta, G.; Pasquon, I.; Corradini, P.; Peraldo, M.; Pegoraro, M.; Zambelli, A. Rend Acad Naz Lincei 1960, 28, 539.

- 2. Natta, G.; Pasquon, I.; Zambelli, A. J Am Chem Soc 1962, 84, 1488.
- Natta, G.; Zambelli, A.; Lanzi, G.; Pasquon, I.; Mognaschi, E. R.; Segre, A. L.; Centola, P. Makromol Chem 1965, 61, 161.
- Boor, J., Jr.; Youngman, E. A. J Polym Sci Polym Chem 1966, 4, 1861.
- Youngman, E. A.; Boor, J., Jr. J Polym Sci Macromol Rev 1967, 2, 33.
- Ewen, J. A.; Johns, R. L.; Razavi, A.; Ferrara, J. D. J Am Chem Soc 1988, 110, 6255.
- Rodriguez-Arnold, J.; Bu, Z.; Cheng, S. Z. D. J Macromol Sci Rev Macromol Chem Phys 1995, C35, 117.
- Boor, J., Jr.; Youngman, E. A. J Polym Sci Polym Lett 1965, 3, 577.
- Miller, R. L.; Seeley, E. G. J Polym Sci Polym Phys 1982, 20, 2297.
- Seeley, E. G. M.S. Thesis, Central Michigan University, 1982.
- Galambos, A.; Wolkowicz, M.; Zeigler, R.; Galimberti, M. ACS Polym Prepr 1991, 64, 45.
- Haftka, S.; Könnecke, K. J Macromol Sci Phys 1991, B30, 319.
- Balbontin, G.; Dainelli, D.; Galimberti, M.; Paganetto, G. Makromol Chem 1992, 193, 693.
- Marigo, A.; Marega, C.; Zannetti, R.; Celli, A.; Paganetto, G. Macromol Rapid Commun 1994, 15, 225.
- Rodriguez-Arnold, J.; Zhang, A.; Cheng, S. Z. D.; Lovinger, A. J.; Hsieh, E. T.; Chu, P.; Johnson, T. W.; Honnell, K. G.; Geerts, R. G.; Palackal, S. J.; Hawley, G. R.; Welch, M. B. Polymer 1994, 35, 1884.

- Rodriguez-Arnold, J. Ph.D. Dissertation, University of Akron, 1994.
- 17. Uehara, H.; Yamazaki, Y.; Otake, C.; Kanamoto, T. Kobunshi Ronbunshu 1994, 51, 597.
- Schmidtke, J.; Strobl, G.; Thurn-Albrecht, T. Macromolecules 1997, 30, 5804.
- De Rosa, C.; Auriemma, F.; Vinti, V.; Galimberti, M. Macromolecules 1998, 31, 6206.
- Supaphol, P.; Spruiell, J. E. J Appl Polym Sci 2000, 75, 44.
- Hoffman, J. D.; Davis, G. T.; Lauritzen, J. I., Jr. In Treatise on Solid State Chemistry; Hannay, N. B., Ed.; Plenum: New York, 1976; Vol. 3, Chapter 7.
- Hoffman, J. D.; Weeks, J. J. J Res Natl Bur Stand 1962, A66, 13.
- Gedde, U. W. Polymer Physics; Chapman & Hall: London, 1995; Chapters 7 and 8.
- Glotin, M.; Mandelkern, L. Colloid Polym Sci 1982, 260, 182.
- Natta, G.; Pegoraro, M. Rend Acad Naz Lincei 1963, 34, 110.
- Corradini, P.; Natta, G.; Ganis, P.; Temussi P. A. J Polym Sci 1967, C16, 2477.
- Lotz, B.; Lovinger, A. J.; Cais, R. E. Macromolecules 1988, 21, 2375.
- 28. Miller, R. L. J Polym Sci 1962, 57, 975.
- 29. Flory, P. J. J Chem Phys 1949, 17, 223.
- 30. Flory, P. J. Trans Faraday Soc 1955, 51, 848.
- Auriemma, F.; De Rosa, C.; Corradini, P. Macromolecules 1993, 26, 5719.
- Sanchez, I. C.; Eby, R. K. Macromolecules 1975, 8, 638.
- 33. Goldbeck-Wood, G. Polymer 1992, 33, 778.